If it's not what You are looking for type in the equation solver your own equation and let us solve it.
169p^2=16
We move all terms to the left:
169p^2-(16)=0
a = 169; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·169·(-16)
Δ = 10816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10816}=104$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-104}{2*169}=\frac{-104}{338} =-4/13 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+104}{2*169}=\frac{104}{338} =4/13 $
| 12w=15+9w | | 12=12x-x^2 | | 13+3c=5(3c+5) | | 10x²+2x=3 | | 4.5+10m=6.89 | | -9.39+2.3f=2.3f-9.39 | | 20,83=8,33+x9 | | 2(-17p-7)+11=-17p-15-18p | | |4x-14|=6 | | 36-9z=4(z-4) | | 8/x=0.2/1.6 | | 8/x=0.2/0.6 | | 7x-13=8x-6 | | 4d+3(-3d+20)=-7d | | x/0.12x=1 | | -5+22x=105 | | (x-11)×5=10 | | 8/12=28/(x–10) | | 29.6+4y=8y+19 | | -3(17h-8)=5(3-12h) | | 29.6+4y=8y19 | | 6^x=360 | | 4y+40=80 | | 31x-2=122 | | 29.6+9=7w+19 | | 2w+9=7w+19 | | 3u+19=7u-13 | | 2x+11+3=14 | | -2(-20-4j)=6(2j+4) | | 45-4c=21 | | 12=3(h-3) | | 14=38-4f |